
Web Assembly Support for 
Clang REPL

Anubhab Ghosh

Mentors: Vassil Vassilev, Alexander Penev



Recap: WebAssembly

• WebAssembly is a web standard that defines a portable virtual CPU 
architecture and corresponding binary code format.
• A browser may either emulate it or opportunistically JIT compile it to native 

code for maximum performance. This is transparent to the WASM program.

• By default, it runs in a sandboxed environment with no access to the outside.
• A WASM code module defines functions that it wants to import/export.

• The Javascript runtime that loads the WASM module can provide implementation of the 
imports and call the exported methods.

• WASM code does not live in the same address space as data (Harvard arch.).
• In fact, WASM functions are defined with high level control flow preserved and have an 

opaque runtime representation. We cannot read/write or even check their size.



Main issues and challenges

• All WASM code within a module is read-only!
• We cannot just write code into memory and jump to it.

• However, we can create multiple modules!
• They can share the same data memory passed from JS runtime!

• Calls across module is possible by linking exports from one module with imports from 
another. Of course, Such calls have runtime overhead!

• We can take a snapshot of the current state of the module, make a new 
module with the new code included and replace the previous one.
• Linking takes too long.

• Size of the compiled modules can be massive. (currently ~72 MiB ☹)
• We must ship at least LLVM, Clang and all libraries we want to use.



Approach

• I used Emscripten as the WASM compiler toolchain as it is mature.
• It has many libraries ported (SDL -> HTMLCanvas, OpenGL -> WebGL).

• We build LLVM, Clang and LLD for WASM and link libclangInterpreter 
with our own glue interpreter code.

• A little bit of Javascript code passes some basic functions (such as 
console.log for stdout/stderr)

• We also pass a default virtual file system.
• It includes headers files provided by both Clang and Emscripten.

• At runtime, on each REPL iteration we call a function with the input 
code on the WASM module.



Approach

• At runtime, at each iteration we call clang::Interpreter::Parse() to 
pass our input to clang but don't call clang::Interpreter::Execute().
• Instead, we take the llvm::Module and generate an object file.

• We then pass this file to wasm-ld to generate a "Shared library".

• We can then use Emscripten's dlopen() implementation to load it.

• It will create a new module, attach the same data memory and resolve the symbols 
from the previous modules.

• Output (if any) is directly shown in page body with the functions 
already provided to the module.

• Other side effects can be executed similarly.



Remaining tasks and issues

• Integrate this with xeus-lite.
• This is a framework that would allow Clang REPL to be used from Jupyter Lite.

• It's a version of Jupyter that runs entirely in browser with WASM kernels.

• Reduce the size if possible.
• All the libraries need to be preserved in entirety in the Emscripten main 

module because we don't know which symbols will be needed at runtime.
• Our initial compiler WASM module is built as a main module (includes the libraries).

• Main Emscripten module cannot be stripped. Unused functions cannot be removed.

• But it includes a large chunk of possibly unused LLVM/Clang code and all the symbols.

• A possible workaround is to move clang into a separate side module.



DEMO



Thank You
https://wasmclang.argentite.me


	Slide 1: Web Assembly Support for Clang REPL
	Slide 2: Recap: WebAssembly
	Slide 3: Main issues and challenges
	Slide 4: Approach
	Slide 5: Approach
	Slide 6: Remaining tasks and issues
	Slide 7: DEMO
	Slide 8: Thank You

