GSoC, 2023
Program @CERN-HSF

g HSF

Student : Smit Shah
Mentors : Vassil Vassilev, Baidyanath Kundu

Enable cross-talk between Python and
C++ kernels in xeus-clang-REPL by

using Cppyy

Summary of my work done

Initial Phase

1] In the initial phase of the coding period, emphasis was placed on implementing
basic functionalities for the CpplInterOp repository.

2] These functionalities included the generation of Code Coverage reports and the
integration of clang-tidy and clang-format checks within the GitHub Continuous
Integration (Cl) pipeline.

3] These initiatives were undertaken to improve the overall code quality and
maintain compliance with established coding standards.

‘P Docs Support Blog Feedback Login Sign up

compiler-research [CppinterOp / ¥ main

Coverage Flags Commits Pulls

¥ Branch Context Coverage on branch 3 Months v trend

+9.84%

main

Source: latest commit 6

2099 of 2885 lines covered

Vv Hide Chart

Aug Sep Oct CpplinterOp

Filelist ~ CppinterOp), Search f

Files T Tracked lines Covered Partial Missed Coverage %
@8 include 27 26 0 1 96.30%
e lib 2858 2073 0 785 72.53%

©2023 Sentry Terms Privacy Security GDPR CP Pricing Support Docs Feedback

€ clang-format € clang-tidy-review

@ [cmake] Do not link to the libLLVM.so file if LLVM_LINK_LLVM_DYLIB is on #137 @ [cmake] Do not link to the libLLVM.so file if LLVM_LINK_LLVM_DYLIB is on #146

@ Summary

2 Summ
precheckin @ Ay review
succeeded yesterday in 15s succeeded 13 hours ago in 2m 50s
Jobs
J > @ Setupjob J > @ Setupjob

Run details > @ Checkout PR branch Run details > @ Build ZedThree/clang-tidy-review@v0.13.2
& Usage > @ Setup Python [9 pane] > @ Checkout PR branch
&Y Workflow file & Workflow file

> @ Install clang-format > @ Install LLvM and Clang

> @ Download git-clang-format > @ Runclang-tidy

> @ Run git-clang-format > @ Upload artifacts

> @ Post Setup Python > @ Post Checkout PR branch

> @ Post Checkout PR branch > @ Complete job

> @ Complete job

Mid Phase

1] Originally, CppinterOp was confined to Ubuntu-based platforms for its build and

testing processes.

2] To expand its usability, a build structure was implemented for macOS. This
structure was successfully integrated into the GitHub Continuous Integration (Cl)
system.

3] The current priority is on developing a similar build structure for Windows. This
initiative aims to make CpplInterOp easily deployable and accessible across various
platforms, ensuring its widespread usability.

osx-clang-clang-repl-16
succeeded 13 hours ago in 3m 41s

>
Q

O 0O 000008 0006000000000 o.0

Set up job

Run actions/checkout@v3

Set up Python

Save PR Info

Run nelonoel/branch-name@v1.0.1

Setup default Build Type on *nux

Setup compiler on Linux

Setup compiler on macOS

Install deps on Linux

Install deps on MacOS

Restore Cache LLVM/Clang runtime build directory
Build LLVM/Cling on Unix if the cache is invalid
Save Cache LLVM/Clang runtime build directory
Setup code coverage

Build and Test/Install CppinterOp on Unix Systems
Build and Install cppyy-backend on Linux

Install CPyCppyy on Linux

Install cppyy on Linux

Run cppyy on Linux

Run the tests on Linux

Show debug info

Setup tmate session

osx-clang-clang13-cling
succeeded 13 hours ago in 3m 8s

v

0000000000000 000000

Set up job

Run actions/checkout@v3

Set up Python

Save PR Info

Run nelonoel/branch-name@v1.0.1

Setup default Build Type on *nux

Setup compiler on Linux

Setup compiler on macOS

Install deps on Linux

Install deps on MacOS

Restore Cache LLVM/Clang runtime build directory
Build LLVM/CIling on Unix if the cache is invalid
Save Cache LLVM/Clang runtime build directory
Setup code coverage

Build and Test/Install CppinterOp on Unix Systems
Build and Install cppyy-backend on Linux

Install CPyCppyy on Linux

Install cppyy on Linux

Run cppyy on Linux

Run the tests on Linux

Show debug info

End Phase

1] In the latter phase of the project, the focus shifted towards the implementation
of Google Tests for specific modules within CpplnterOp. Additionally, existing tests
were modified to encompass all possible edge cases.

2] This meticulous testing approach is essential for ensuring the development of
high-quality software that fulfills all its requirements comprehensively.

3] Writing these tests serves multiple purposes, such as gaining a deeper
understanding of the module functionalities, identifying and eliminating potential
bugs, and ultimately refining the software's overall reliability.

TEST(InterpreterTest, Declare) {
testing::internal::CaptureStdout();
EXPECT_EQ(Cpp::Declare("int 1i;",
EXPECT_EQ(Cpp::Declare("int i;",
EXPECT_EQ(Cpp::Declare("smit i;",
EXPECT_EQ(Cpp::Declare("int i1;",

TEST(ScopeReflectionTest, DumpScope) {

Interp—declare(R" (
1 C {

int Xx;

testing::internal::CaptureStdout();

Cpp:: TCppScope_t scope = Cpp::GetNamed("C");

Cpp :: DumpScope(scope) ;

std::string output = testing::internal::GetCapturedStdout();
EXPECT_TRUE (output.empty());

Future Works

1] Integrated the Windows build structure into the GitHub Continuous
Integration (CI) pipeline.

2] Adding tests for the remaining untested portions of the code to enhance
code coverage.

3] Continuing exploration of cppyy and cppyy-backend for the purpose of
debugging tests.

Learnings

1] | was completely new with compiler domain. However while implementing
APIls during GSoC period. | was able to understand more about clang/cling. And
this learning increased my curiosity in the field.

2] I also learnt a lot about build structure and Github Cl and integration with it

3] I came across Google Test Framework and understood how it works and its
requirement.

4] Most notably, this GSoC project marked my maiden voyage into
collaborative project work, offering me a firsthand glimpse into what it's like to
work on a team under someone else's guidance.

Acknowledgement

| am extremely grateful to my mentor Vassil Vassilev and Baidyanath
Kundu for allowing me to work on the project and for all of their guidance
and support. Whenever | sought assistance or guidance, they unfailingly

stood by my side, offering their support and expertise.

Thank You

