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Enable cross-talk between Python and
C++ kernels in xeus-clang-REPL by

using Cppyy




Summary of my work done




Initial Phase

1] In the initial phase of the coding period, emphasis was placed on implementing
basic functionalities for the CpplInterOp repository.

2] These functionalities included the generation of Code Coverage reports and the
integration of clang-tidy and clang-format checks within the GitHub Continuous
Integration (Cl) pipeline.

3] These initiatives were undertaken to improve the overall code quality and
maintain compliance with established coding standards.
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Mid Phase

1] Originally, CppinterOp was confined to Ubuntu-based platforms for its build and

testing processes.

2] To expand its usability, a build structure was implemented for macOS. This
structure was successfully integrated into the GitHub Continuous Integration (Cl)
system.

3] The current priority is on developing a similar build structure for Windows. This
initiative aims to make CpplInterOp easily deployable and accessible across various
platforms, ensuring its widespread usability.
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End Phase

1] In the latter phase of the project, the focus shifted towards the implementation
of Google Tests for specific modules within CpplnterOp. Additionally, existing tests
were modified to encompass all possible edge cases.

2] This meticulous testing approach is essential for ensuring the development of
high-quality software that fulfills all its requirements comprehensively.

3] Writing these tests serves multiple purposes, such as gaining a deeper
understanding of the module functionalities, identifying and eliminating potential
bugs, and ultimately refining the software's overall reliability.




TEST(InterpreterTest, Declare) {
testing::internal::CaptureStdout();
EXPECT_EQ(Cpp::Declare("int 1i;",
EXPECT_EQ(Cpp::Declare("int i;",
EXPECT_EQ(Cpp::Declare("smit i;",
EXPECT_EQ(Cpp::Declare("int i1;",

TEST(ScopeReflectionTest, DumpScope) {

Interp—declare(R" (
1 C {

int Xx;

testing::internal::CaptureStdout();

Cpp:: TCppScope_t scope = Cpp::GetNamed("C");

Cpp :: DumpScope(scope) ;

std::string output = testing::internal::GetCapturedStdout();
EXPECT_TRUE (output.empty());




Future Works

1] Integrated the Windows build structure into the GitHub Continuous
Integration (CI) pipeline.

2] Adding tests for the remaining untested portions of the code to enhance
code coverage.

3] Continuing exploration of cppyy and cppyy-backend for the purpose of
debugging tests.




Learnings

1] | was completely new with compiler domain. However while implementing
APIls during GSoC period. | was able to understand more about clang/cling. And
this learning increased my curiosity in the field.

2] I also learnt a lot about build structure and Github Cl and integration with it

3] I came across Google Test Framework and understood how it works and its
requirement.

4] Most notably, this GSoC project marked my maiden voyage into
collaborative project work, offering me a firsthand glimpse into what it's like to
work on a team under someone else's guidance.
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