
Vectorized forward mode AD in clad
By Vaibhav Thakkar

Forward mode AD

𝑓 (𝒙, ỿ, 𝒛) = 𝒙 + ỿ + 𝒛 𝜕𝑓 / 𝜕𝒙

+

𝒙 𝒛ỿinputs

op

𝑓 (𝒙, ỿ, 𝒛)

𝒙’ = 1 ỿ’ = 0 𝒛’ = 0

𝑓 ’ = 𝒙’ + ỿ’ + 𝒛’

𝛼’ = ∂𝛼 / ∂𝒙

Forward mode AD

𝑓 (𝒙, ỿ, 𝒛) = 𝒙 + ỿ + 𝒛 𝜕𝑓 / 𝜕ỿ

+

𝒙 𝒛ỿinputs

op

𝑓 (𝒙, ỿ, 𝒛)

𝒙’ = 0 ỿ’ = 1 𝒛’ = 0

𝑓 ’ = 𝒙’ + ỿ’ + 𝒛’

𝛼’ = ∂𝛼 / ∂ỿ

Forward mode AD

𝑓 (𝒙, ỿ, 𝒛) = 𝒙 + ỿ + 𝒛 𝜕𝑓 / 𝜕𝒛

+

𝒙 𝒛ỿinputs

op

𝑓 (𝒙, ỿ, 𝒛)

𝒙’ = 0 ỿ’ = 0 𝒛’ = 1

𝑓 ’ = 𝒙’ + ỿ’ + 𝒛’

𝛼’ = ∂𝛼 / ∂𝒛

Vectorized Forward mode AD

𝑓 (𝒙, ỿ, 𝒛) = 𝒙 + ỿ + 𝒛 ∇𝑓 = [𝜕𝑓/𝜕𝒙, 𝜕𝑓/𝜕ỿ, 𝜕𝑓/𝜕𝒛]

+

𝒙 𝒛ỿinputs

op

𝑓 (𝒙, ỿ, 𝒛)

∇𝒙 = [1, 0, 0] ∇ỿ = [0, 1, 0] ∇𝒛 = [0, 0, 1]

∇𝑓 = ∇𝒙 + ∇ỿ + ∇𝒛 = [1, 1, 1]

∇𝛼 = [𝜕𝛼/𝜕𝒙, 𝜕𝛼/𝜕ỿ, 𝜕𝛼/𝜕𝒛]

Vectorized Forward Mode AD

Problem
For computing gradient of a function with n-dimensional
input - forward mode requires n forward passes, 1 for
each input.

Can we instead compute the complete gradient in one
pass?

Proposed Solution

Instead of accumulating a single scalar value of
derivative with respect to a particular node - maintain a
gradient vector at each node.

Initialised by a 1-hot vector for each input node

Progress till now

Updated clad interface

Differentiating array parameters

● Each arr[i] is a separate independent variable
which needs to maintain a vector - this means we
need a matrix to store _d_vector_arr.

● Can be multiple array parameters, so multiple
matrix instances.

2

Major Features added

● Support for vectorized forward mode for functions containing any of the following:
○ Arithmetic operations
○ Variable assignments
○ Control flow (if statements / loops)

● Restructured ForwardModeVisitor classes to separate out the logic from basic forward
mode AD.

● Improved the interface of clad::differentiate to take bit-masked options and allowing user to
specify multiple input params for differentiation.

● Fixed all LLVM assertions errors when using vector mode
○ Required generating an overload function

Major Features added

● Adding support for differentiation array parameters
○ Required adding a clad::matrix class along with benchmarks.

● Documentation and demo examples for vector mode.

● Some utilities like adding clang-format and clang-tidy in GitHub checks to ensure code
quality.

Next Goal

Improving efficiency

● Current implementation is for vectorization at algorithmic level.

○ To achieve performance speedups - we need to perform operations in
parallel at hardware level by instructing the compiler that it is safe to
vectorize these operations.

Future Goals

Missing features

● Adding support for differentiating function with call expressions.
○ std::exp, std::sin, … custom_defined_fn (x, y, z)

● Object oriented feature support - differentiating methods and functors.

● Improving compute and memory efficiency by activity analysis (enzyme also does this).

● Reverse vector mode.
○ General reverse mode AD - traverse from single output to all inputs.
○ Vectorized reverse mode AD - traverse from multiple output to all inputs.

Questions ?

