Vectorized forward mode AD in clad

By Vaibhav Thakkar

Forward mode AD

fle,0,2)=x+0+z |— df / ox

x':'] D‘=0 z':O

(=1 [o] [=]

o =0a/ox \ /

Forward mode AD

fle, 0,z)=x+0+z |/ 8f/8D+

Forward mode AD

fle, 0,z)=x+0+z |/ 8f/8z+

X'=0 =0 7=1 <
o

Vectorized Forward mode AD

flx, 0,2)=x+0+z |— | Vf=[0f/ox, of/oL], 0f/dz] | ==

Vx=[1,0,0] vi=[0,1,0] Vz=[0,0,1] (mmmm

(=1 [o] [=]

Va = [9a/dx, 9a/d1), da/dz] <mm— \ ' /

l Vf=Vx+Vi+Vz=[1,1,1 (==

flx ,2)

Vectorized Forward Mode AD

Problem Proposed Solution
For computing gradient of a function with n-dimensional Instead of accumulating a single scalar value of
input - forward mode requires n forward passes, 1 for derivative with respect to a particular node - maintain a
each input. gradient vector at each node.
Can we instead compute the complete gradient in one Initialised by a 1-hot vector for each input node
pass?
Forward Vector Forward

YYYY ¥

Progress till now

Updated clad interface

double f(double x, double y, double z) {
return *X + *y + *Z; void f_dvec_0_2(double x, double y, double z, double *_d_x, double *_d_z) {

} clad:: array<double> _d_vec_x = {1., 0.};

clad::array<double> _d_vec_y S

clad::array<double> _d_vec_z .

int main() { {
// call clad to generate the derivative of f wrt x and z.
auto f_dx = clad::differentiatekclad:: opts::vector mode>f,

clad::array<double> _d_vec_ret = 1. * _d_vec_x + 2. * _d_vec_y + 3. * _d_vec_z;
*_d_x = _d_vec_return[o];

* d_z = _d_vec_return[1];

return;

// Execute the generated derivative function.

double dx = @, dy = @, dz = 0;

f_dx.execute(/*xx=%/ 3, /fxy=%/ 4, [kz=%/ 5, &dx, &dz);

Differentiating array parameters

// A function for weighted mean of array elements.

double weighted mean(doublex arr, doublex weights, int n) { Each al’l’[l] |saseparate|ndependent variable

double res = 0; which needs to maintain a vector - this means we

for (int i = 0; 1 < nj +1i) { need a matrix to store _d_vector_arr.
res += weights[i] * arr[i];

}
return res; Can be multiple array parameters, so multiple

matrix instances.
weighted sum dvec 0 1(arr, weights, Ny 2 y ref< > d arr, R \ > d weights) {
indepVarCount = d arr.size() + d weights.size

ad : :matrix< > d vector arr = 3d: :identity matrix(d arr.size(), indepVarCount, OUL);
lad::matrix< > d vector weights = clad::identity matrix(d weights.size(), indepVarCount, d arr.size

Major Features added

Support for vectorized forward mode for functions containing any of the following:
o Arithmetic operations
o Variable assignments
o Control flow (if statements / loops)

e Restructured ForwardModeVisitor classes to separate out the logic from basic forward
mode AD.

e Improved the interface of clad.::differentiate to take bit-masked options and allowing user to
specify multiple input params for differentiation.

e Fixed all LLVM assertions errors when using vector mode
o Required generating an overload function

Major Features added

e Adding support for differentiation array parameters
o Required adding a clad::matrix class along with benchmarks.

e Documentation and demo examples for vector mode.

e Some utilities like adding clang-format and clang-tidy in GitHub checks to ensure code
quality.

Next Goal

Improving efficiency

e Current implementation is for vectorization at algorithmic level.

o To achieve performance speedups - we need to perform operations in
parallel at hardware level by instructing the compiler that it is safe to
vectorize these operations.

Scalar Vectorized
§ [OREEEEE
operation operation|

Time [N
Y MMM MMM

Future Goals

Missing features

e Adding support for differentiating function with call expressions.
o std:exp, std:sin, ... custom_defined_fn (x, y, z)

e Object oriented feature support - differentiating methods and functors.
e Improving compute and memory efficiency by activity analysis (enzyme also does this).

e Reverse vector mode.

o General reverse mode AD - traverse from single output to all inputs.
o Vectorized reverse mode AD - traverse from multiple output to all inputs.

Questions ?

