
Vectorized forward mode AD in clad
By Vaibhav Thakkar



Basics of Automatic Differentiation (AD)

- Aims to produce a procedure for computing the derivative of 
any general computational program. 

- It does so by breaking down the program into a computation 
graph of primitive operations (+, -, * , /) and some primitive 
functions (sin, cos, exp …).



Forward mode vs Reverse mode AD

Reverse mode AD
preferred when single output, multiple inputs 

gradient computations

Forward mode AD
preferred when derivative w.r.t single input



Clad

A clang plugin to generate the code for 
derivative of a function at compile 
time.

Source code transformation - analyzes 
the AST of the input program and 
generates AST for the derivative 
program.



Vectorized forward mode

Problem
For computing gradient of a function with n-dimensional 
input - forward mode requires n forward passes, 1 for 
each input.

Can we instead compute the complete gradient in one 
pass?

Proposed Solution

Instead of accumulating a single scalar value of 
derivative with respect to a particular node - maintain a 
gradient vector at each node.

Initialised by a 1-hot vector for each input node



Why is it better than reverse mode AD?

Vectorized forward mode can effectively utilize parallelization and vectorization capabilities of 
modern CPUs and GPUs.

Reverse mode has large memory requirements as requires storing values of all intermediate 
nodes during forward evaluation.

Easy to implement and less error prone compared to reverse mode (especially for source 
transformation approach).



Updated clad interface



Questions ?
Also wrote a blogpost to explain basics of automatic differentiation: https://vaithak.github.io/autodiff-clad/

https://vaithak.github.io/autodiff-clad/

