
WebAssembly support for 
clang-repl
Anubhab Ghosh

Mentors: Vassil Vassilev, Alexander Penev



What is Web Assembly?
● Assembly inside a web browser ?!
● Modern Javascript engines rely heavily on JIT compilation of Javascript to 

native code before execution.
○ There is a trade-off between time to compile vs execution performance 

improvement. 
■ Most engines compile portions of “hot” code after they are 

executed it several times.
● WebAssembly avoids all of that!

○ Precompiled to an intermediate representation
○ Compact binary representation for fast parsing
○ Simple to execute in an abstract virtual CPU

■ Sandboxed for security and portability
○ Can be easily compiled to native code



How does it actually look like?
● It follows Harvard architecture

○ Instructions and data are strictly separate. Similar to microcontrollers.
○ This has serious consequences for JIT !

● It runs completely sandboxed.
○ By default there is no interface/API for talking to world outside VM.
○ Exports functions that can be called from outside.
○ Imports functions from outside that can be called.

● It is a stack machines.
○ No registers!
○ All computations is performed on the top of the implicit stack.

https://app.diagrams.net/?page-id=69zLx6YZ-RyXhnuhKnw0&scale=auto#G1OrytVsOq2Q39t-q7R6GzvNfpOD8iLsoE


The architecture
● Linear Data memory is accessible from 

WASM and JS
● Code is divided into variably sized 

functions
○ The actual internal representation is 

on the engine
○ WASM code refers to functions by 

an index which acts like an opaque 
handle

○ No way to add new functions from 
WASM code

● No JIT code generation possible from 
WASM!

https://app.diagrams.net/?page-id=-eNLjIOmfQbkYPRtDKyH&scale=auto#G1OrytVsOq2Q39t-q7R6GzvNfpOD8iLsoE


Taking help from JS side
● We can generate a new WASM module and give it to the 

Javascript “runtime”.
● The runtime can instantiate a new WASM Instance with this 

module.
● Linear memory can be trivially shared between modules.
● Old module can export its functions that the new module 

imports. Failing that, JS runtime can provide a transparent 
RPC service.

○ Cross module calls won’t have the best performance.
○ To achieve all of this, we probably have to take most of 

clang-repl and libInterpreter functionality from 
C++/WASM into the Javascript runtime.

https://app.diagrams.net/?page-id=YKqa-tcF0PiNhunGRTuM&scale=auto#G1OrytVsOq2Q39t-q7R6GzvNfpOD8iLsoE


The Plan

Generate WASM

Produce WASM code in 
clang-repl.
This should be similar 
to generating CUDA 
device code.
We can use the LLVM 
WebAssembly target.
We skip the execution 
part and output the 
generated code.

Inside WASM

Compile Clang for 
WASM.
Run the JIT within a 
Javascript engine.
Display the generated 
code.

Execute

Create full WASM 
modules within the 
engine and export it.
Let the JS runtime 
execute independent 
bits of code (no 
linking/shared memory 
required).

UI

Integrate within 
JupyterLite.
Possibly provide some 
convenience functions 
to use in a notebook?

Link

Generate and execute 
code that depends on 
previous modules or 
standard library. This is 
the trickiest part.



Thank you


