GSoC 2023
Program @ LLVM

Student:
Krishna Narayanan

Mentors:
Vassil Vassilev, David Lange

<&

Tutorial Development with clang-repl
and xeus-clang-repl

Incremental Compilation

Clang-Repl Usage
Clang-Repl is an interactive C++ interpreter that allows for incremental compilation. It supports interactive programming for C++ in a read-

evaluate-print-loop (REPL) style. It uses Clang as a library to complle the high level programming language into LLVM IR. Then the LLVM IR is
executed by the LLVM just-in-time (JIT) infrastructure.

Basic:

Clang-repl> #include <iostreass
Clang-repl> int £() { std:icout << "Hello Interpreted World!\n'; return 0; }

0
/7 Prints Hello Interpreted World!

Clang-repl> #includeciostrean
Clang-repl> using namespace std;

Clang-repl> std: :cout << "Welcome to CLANG-REPL® << std: :endl;
Welcose to CLANG-REPL

/1 Prints Welcone to CLANG-REPL

Function Definitions and Calls:

Clang-repl> #include <iostreas>
Clang-repl> int sum(int a, int b){ return asb; };
Clang-repl> int c = sua(9,18);

Clang-repl> std: :cout << ¢ << std: tendl;

1

Clang-repls

Iterative Structures:

Clang-repl> #include <iostreass
Clang-repls for (int i = B;i < 3;i++){ std:icout << i << std:zendL;}
0

1
2
Clang-repl> while(i < T){ i++; std:icout << i << std:zendl;}
4
5

6
7

Classes and Structures:

Clang-repl> #include <iostreas>

il R ma i s e patt e e s B
Clang-repl... int area() {return width*height;}};

it i Toctmal otk vatims Gt = iat)] it & bt = D)
Clang-repl> int main () { Rectangle rect;rect.set values (3,4);\

Clang-repl < "area: << rect.area() << std:iendL;\

Clang-repl... return 8:)

clang-repl> main()

Clang-repl>
// Wote: This '\ can be used for continuation of the statesents in the next Line

ang-Repl)

Using Dynamic Library:

clang-repl> #lib print.so
clang-repl> #include"print.hpp"
clang-repl> print(9);

9

Generation of dynamic library

1/ print.cpp
#include <iostream>
#include "print.hpp"

void print(int a)

std::cout << a << std::endl;

}

// print.hpp
void print (int a);

// Commands
clang++-17 -c -0 print.o print.cpp
clang-17 -shared print.o -0 print.so

Comments:

clang-repl> // Comments in Clang-Repl
clang-repl> /* Comments in Clang-Repl */

Closure or Termination:

clang-repl>tquit

Just like Clang, Clang-Repl can be integrated in existing applications as a library (using the clanginterpreter library). This tums your C++
compiler into a service that can incrementally consume and execute code. The Compller as A Service (CaaS) concept helps support
advanced use cases such as template instantiations on demand and automatic language interoperability. It also helps static languages such as
C/C++ become apt for data science.

https://clang.llvm.org/docs/ClangRepl.html

https://clang.llvm.org/docs/ClangRepl.html

Add CpplnterOp Documentation

CppInterOp

) watch 7

Navigation
Contents:

InstallationAndUsage
Using Cpplnterop
Reference

Tutorials

FAQ

Developers Documentation
Building from source

Quick search

Welcome to CpplnterOp’s
documentation!

The CpplnterOp library (previously LibInterOp) provides a minimalist approach for other lan-
guages to identify C++ entities (variables, classes, etc.). This enables interoperability with C++
code, bringing the speed and efficiency of C++ to simpler, more interactive languages like
Python.

Contents:

+ InstallationAndUsage

o Build cling with LLVM and clang:
o Build Clang-Repl:

+ Using Cpplnterop

o C++ Language Interoperability Layer

* Reference

* Tutorials

« FAQ

+ Developers Documentation
« Building from source

o Clang-Repl
o CpplnterOp Internal Documentation

CpplnterOp

C++ Language Interoperability Layer

Main Page ‘ Namespaces v | Classes v ‘ Files v |

\ \
CpplinterOp

Introduction

AClang-based C++ Interoperability library, which allow C++ code to be accessed and used from other programming languages. This involve
The document explains the detailings of the API of the language interoperability layer. This library allows different languages to interoperate

This documentation describes the internal software that makes up CppinterOp, not the external use of CppinterOp. There are no complete
instructions, please see the programmer's guide or reference manual.

Caveat

This documentation is generated directly from the source code with doxygen. Since CpplnterOp is constantly under active development, wh

enerated on Fri Jul 21 2023 10:53:25 for CpplnterOp by Doxygen 1.9.1.

See the Main CppinterOp Web Page for more information.

https://cppinterop.readthedocs.io/en/latest/index.html

https://cppinterop.readthedocs.io/en/latest/index.html

CpplnterOp Tutorials

Tutorials

This tutorial emphasises the abilities and usage of CpplInterOp. Let’s get started! The tutorial

demonstrates two examples, one in C and one in Python, for interoperability.

Note:This example library shown below is to illustrate the concept on which CppInterOp is
based.

Python:

‘

libInterop = ctypes.CDLL(libpath, mode = ctypes.RTLD GLOBAL)
_cpp_compile = libInterop.Clang Parse
_cpp_compile.argtypes = [ctypes.c char pl

We are using ctypes for inducting our library, and *Clang Parse*, i
part of the library, for parsing the C++ code.

Giving a glance at how the header file looks for our library :
The header keeps our function declarations for the functions used in
library.

This basically parses our C++ code.
void Clang Parse(const char* Code);

Looks up an entity with the given name, possibly in the given Conte
Decl t Clang LookupName(const char* Name, Decl t Context);

Returns the address of a JIT'd function of the corresponding declai
FnAddr_t Clang GetFunctionAddress(Decl t D);

Returns the name of any named decl (class, namespace) & template al
std::string GetCompleteName(Decl t A);

Allocates memory of underlying size of the passed declaration.
void * Clang CreateObject(Decl t RecordDecl);

Instantiates a given templated declaration.
Decl_t Clang InstantiateTemplate(Decl t D, const char* Name, const ci
»

The C++ code that is to be used in Python comes under this below section. This code is parsed

by the CpplInterOp library in the previous snippet and further compilation goes on.

G

Include p3-ex4-lib.h, which contains the declarations for the functions used in this code. The de-
tailed summary of header comes in the latter part.

The variable Code is given as a C-style string, it contains the C++ code to be parsed. It has two
classes, class A and a templated class B with a member function callme.

const char* Code = "void* operator new(SIZE TYPE , void* p)
"extern \"C\" int printf(const char*,...);"
"class A {};"
"\n #include <typeinfo> \n"
"class B {"

"public:”

" template<typename T>"

" void callme(T) {"

U printf(\" Instantiated with [%s] \\n \", typeid(

< >

The main() begins with the call to Clang_Parse from interop library responsible for parsing the
provided C++ code.

Next there a number of initializations, Instantiation is initialized to zero, it will be used to store
the instantiated template. The InstantiationArgs is initialized to “A”, it will be used as the argu-
ment when instantiating the template. T is initialized to zero, used to store the declaration of the

type “T” used for instantiation.

Decl t Instantiation = 0;

const char * InstantiationArgs = "A";

Decl_t TemplatedClass = Clang_LookupName("B", /*Context=*/0);
Decl t T = 0;

This snippet checks command-line arguments were provided by the arge arguments. We take the
first argument (argv[1]), parse it, then take the second argument (argv[2]) using
Args to the third argument (argv[3]). In the

Clang_L p) , and igns I

else case, we decide to go with the *

The code proceeds to instantiate the template B::callme with the given type, using the
Clang_InstantiateTemplate function from the library. The instantiated template is stored in the
TInstantiation.

Add xeus-clang-repl Documentation

Xeus-Clang- Welcome to xeus-clang-repl’s Z(etjsj(p:yﬁr]?kREPL

REPL do Cum ent ation ! Main Page = Namespaces v ‘ Classes ¥ 1 Files

o Watch The Xeus-Clang-REPL is a Jupyter kernel for the C++ programming language Xeus'CIang'Repl
: : Contents: &
Navigation Introduction
Contiiits: o InstallationAndUsage
= xeus-clang-repl is a Jupyter kernel for C++ based on the C++ interpreter clang-repl and the native implementation of the Jupyter protocol xeus.
¢ Using xeus-clang-repl
InstallationAndUsage

o Reference This documentation describes the internal software that makes up Xeus-Clang-Repl, not the external use of Xeus-Clang-Repl. There are no compl

Using xeus-clang-repl

o Tutorials Clang-Repl, only the APIs that make up the software. For usage instructions, please see the programmer's guide or reference manual.
Reference

*« FAQ
Tutorials « Developers Documentation Caveat
FAQ
Developers Documentation This documentation is generated directly from the source code with doxygen. Since Xeus-Clang-Repl is constantly under active development, what
QUiCk search Generated on Mon Aug 7 2023 15:50:10 for Xeus-Clang-REPL by Doxygen 1.9.1.

Go ﬁ | See the Main Xeus-Clang-REPL Web Page for more information.

https://xeus-clang-repl-docs.readthedocs.io/en/latest/

https://xeus-clang-repl-docs.readthedocs.io/en/latest/

Add xeus-cpp Documentation

xeus-cpp

/ Introduction © Edit on GitHub Xeus_cpp 290

C++ usage in Jupyter Notebooks

’ ‘ e l l E Main Page | Namespaces ‘ Classes » ‘ Files ~ ‘

C p p Xeus-cpp
Introduction d .
xeus-cpp is a Jupyter kernel for cpp based on the native implementation of the Jupyter protocol Intro UCtlon
o xeus-cpp is a Jupyter kemel for C++ based on the C++ interpreter cpp and the native implementation of the Jupyter protocol xeus.
Licensin
e » ° _ This documentation describes the internal software that makes up Xeus-cpp, not the external use of Xeus-cpp. There are no complete in:
SHEERRS R P e e B e e instructions, please see the programmer's guide or reference manual.
- EthicalA u The full license is in the file LICENSE, distributed with this software.
Welcome to Xeus-Cpp’s documentation! Caveat

The Xeus-Cpp is a Jupyter kernel for the C++ programming language

This documentation is generated directly from the source code with doxygen. Since Xeus-cpp is constantly under active development, whe
DEVELOPER ZONE

- Build and configuration

Generated on Thu Aug 24 2023 03:48:36 for Xeus-cpp 2.9.0 by Doxygen 1.9.1.

o General Build Options

« InstallationAndUsage

+ Using xeus-cpp See the Main Xeus-cpp Web Page for more information.

+ Reference

2 oo iio Do
Waitina far vetic-cnn-dars readrhedacs in

https://xeus-cpp-docs.readthedocs.io/en/latest/

https://xeus-cpp-docs.readthedocs.io/en/latest/

xeus-cpp docs glimpse

InstallationAndUsage

You will first need to install dependencies.

mamba install cmake cxx-compiler xeus-zmq nlohmann_json cppzmq xtl jupyterlab
clangdev=16 cpp-argparse pugixml -c conda-forge

Note: Use a mamba environment with python version >= 3.11 for fetching clang-versions.

The safest usage is to create an environment named xeus-cpp.

mamba create -n Xxeus-cpp
source activate xeus-cpp

Installing from conda-forge: Then you can install in this environment xeus-cpp and its dependencies.

mamba install xeus-cpp notebook -c conda-forge

mkdir build && cd build

cmake .. -D CMAKE_PREFIX_PATH=$CONDA_PREFIX

-D CMAKE_INSTALL_PREFIX=$CONDA_PREFIX -D CMAKE_INSTALL_LIBDIR=1lib
make && make install

C++-Python Integration:

:Jupyter Python-Cpp-Integration-Demo (unsaved changes) e Logout

View inset Cell Kemel Help Not Trussed |Ces11 ©

@

! extern "C" int printf(const chars,.

: int new_varl

B+ ¢ PRn B C » Code 3l =

Declaring variables in C++

=12;
int new_var2 = 25;
int new_var3 = 64;

Running Python with C++ variables

: %wpython

from time import time,ctime

print('This is printed from Python: Today is', ctime(time()))
python_array = [1, 2, new_varl, new_var2, new_var3]

print (python_array)

This is printed from Python: Today is Tue Oct 25 11:38:08 2022
1, 2, 12, 25, 64]

: %Apython

new_python_var = 1327

: auto k = printf(“new_python_var = %d\n", new_python_var);

new_python_var = 1327

In this example, we are emphasising the concept of C++-Python integration, where we use Python
and C++ in the same session, sharing variables, scopes, and features. Here, we have used variables
(new_var1, new_var2, new_var3) in python which have been initialised in C++. In the following
context, we have tried the vice versa as well of using the variables in Python (new_python_var)
which have been defined in C++.

Miscellaneous

e Port vi1 to v2 configuration readthedocs for compiler research projects which uses
builder os reliant on python tools(python-3.”, mambaforge-22.").

e Working on Sagib's patch to land on clang documentation (support for graphviz
extension for diagram convention).

e Contributing to CpplnterOp, xeus-clang-repl upstream recently.

e Fixing bugs found in the current work and patching them up.

THANKYOU !

