Handle Execution
results in clang-repl

Jun Zhang Menfcors: . .
jun@junz.org Vassil Vassilev & David Lange

About me

I’m Jun Zhang, 3rd year undergraduate student
major in Software Engineering.

Working in the compiler research team since May 2022.

Last year Google Summer of Code student, Clang/LLVM contributor. (Land ~70 patches)

Project Background \

An introduction to clang-repl

clang-repl is an interactive C++ interpreter that allows for incremental compilation, based on
Clang and LLVM Orc JIT.

Clang-REPL design
clang-repl> #include <iostream>
clang-repl> std::cout << “Hello, world'\n”;
Hello,world!

User input

in C/C++

(e
w s
X o
ha
U]
Zg
3e
g

LLVM JIT
compilation

Project Goals

Value pretty printing

clang-repl>int x = 42;

clang-repl> x

(int) 42

clang-repl> std::vector<int> v{1,2,3};
clang-repl>v

(std::vector<int>&){1,2,3}

Compiled/Interpreted code interop

int Global = 42;

void setGlobal(int val) { Global = val; }

int getGlobal() { return Global; }
Interp.ParseAndExecute(“void setGlobal(int val);”);
Interp.ParseAndExecute(“int getGlobal();”);
\ZIEAYA

Interp.ParseAndExecute(“getGlobal()”, &V);

std::cout << V.getAs<int>() << “\n”; // Prints 42

The implementation \
(Highly inspired by Cling)

Overview

set a marker
in the token

Parser

Synthesize
the AST

AST
Consumer

Execute the

set a flag given code
in AST

LLVM Orc JIT

Top level expressions extension

clang-repl> int x = 42;
clang-repl> x // Missing semicolon.
Invalid in standard C++, but fine in the incremental C++.

Omit the semi tells clang-repl we want to capture the value of the DeclRefExpr (x)

10

Annotation token: annot_repl_input_end

945 4+ // Annotation for end of input in clang-repl.

946 + ANNOTATION(repl input_end)
947 4+

Token *CurTok = nullpt

When parsing an ExprStmt and

the |aSt Semi |S m|SSing, We’” 5 ., shouldn't eat t ‘j token since 'H'ue‘callba,: n :

) 5 if (Tok.is(tok::annot_repl input_end) && Actions.getlLangOpts().CPlusPlus)
pretend that there’s one and : GiiF Tk = aToks
set a marker for the late use. 552 else

// Otherwise, eat the sen

ExpectAndConsumeSemi(diag: :err_expected_semi_after_expr);

StmtResult R = handleExprStmt(Expr, StmtCtx);
if (CurTok && !R.isInvalid())
CurTok->setAnnotationValue(R.get());

return R;

11

AST transformation

if (Tok.is(tok::annot repl input end) &&
Tok.getAnnotationValue() != nullptr) {

ConsumeAnnotationToken();

cast<TopLevelStmtDecl>(DeclsInGroup.back())->setSemiMissing();

bool HandleTo ecl(DeclGroupRef DGR) override final {
if (DGR.isNull())
. . return true;
Sema sets a flag after seeing the special ik (lecnstier)
token, so we know we should transform the FERHPHRES,
AST before the real CodeGen process. for (Decl *D : DGR)

if (auto *TSD = 1llvm::dyn_cast<ToplLevelStmtDecl>(D);
TSD && TSD->isSemiMissing())
TSD->setStmt(Interp.SynthesizeExpr(cast<Expr>(TSD->getStmt())));

return Consumer->HandleToplLevelDecl(DGR);

1
J

Code synthesis

clang-repl>x — _ clang_Interpreter_SetValue(x); // pseduo code.

DeclRefExpr — CallExpr

, but a rvalue.

aluel

+ Expr *Interprete t pr(Expr *E) {

13

Value runtime

A value is a container that can carry the arbitrary result of an expression in an
endian-independent way with small buffer optimization.

clang::QualType* getType();
template<typename T>
T castAs();

void printType(llvm::raw_ostream& 0S);

void printData(llvm::raw_ostream& 0S);

void print(llvm::raw_ostream& 0S);

void dump() const;

1

The value that holds the information of the expression can be passed around after
construction.

14

Pretty print implementation

+ 1lvm::Error Interp ~::ParseAndExecute(1lvm: :StringRef Code, Value *V) {

+
auto PTU = Parse(Code);
if (1PTU)

return PTU.takeError();
if (PTU->TheModule)

If the user aSkS for the Value, we 1 if (1lvm::Error Err = Execute(*PTU))
. return Err;
pass It as output parameter.

if (LastValue.isvalid()) {
if (V) {

Or we perform pretty printing: astvntos Sl
Invoke Value::dump() : LastValue. clear();
i } else

*V = std::move(LastValue);
1
J

return 1lvm::Error::success();

15

Implementation of Value:dump

If the type is a builtin type:
Just print it directly.
Else:

Synthesize a call to another runtime function: PrintValueRuntime(const T*)

fails then generate a runtime call, this is slow.

SS << SynthesizeRuntimePrint(V);

1
J

return Str;

16

std:string PrintValueRuntime(const T)

+ static std::string SynthesizeRuntimePrint(const Value &V) {

A” Overloads ||Ve Ina header’ WhICh Interpreter &Interp = const cast<Interpreter &> (V.getInterpreter());

are included at runtime. Sema & = Interp.getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();

// Only include this header once and on demand. Because it's very
static bool Included = false;
So print a std::vector is equivalent to: : if (IIncluded) {

PrintValueRuntime(&v); Included = true;

11lvm: :cantFail(

Interp.Parse("#include <_ clang interpreter_runtime_printvalue.h>"));

This means users can write their own overload for their types:

clang-repl> struct S{};

clang-repl> std::string PrintValueRuntime(const S* s) { return “My printer!”; }
clang-repl> S{}

(S) “My Printer!”

17

How we make it

N\

18

Submit the RFC

RFC: Handle Execution Results in clang-repl Spe nd almost one month writi ng
the RFC and discussing the
TL,;DR: Synthesize automatic printf to print execution results in clang-repl and generalize the I m p I e m e ntatl O n Wlth th e
ZZZ;O,aan ,fi;se an object used to bridge compiled/interpreted code taking inspiration from what was C O m m u n ity

junaire

Introduction

The Cling interpreter is a unique interpretative technology for C++ based on Clang developed by high-
energy physics (HEP). It is used to deliver reflection and type information for exabytes of scientific data
and is heavily used during data analysis of particle physics data from the Large Hadron Collider (LHC)
and other particle physics experiments.

In RFC Moving (parts of) the Cling REPL in Clang 1 we discussed and shipped the initial incremental
compilation facilities into LLVM mainline, called clang-repl

In this RFC we propose two distinct features and their interaction: automatic printf and connecting
compiled and interpreted C++ through a class called Value as an abstraction layer used to carry
expression results and support value pretty printing in clang-repl.

Goals

Automatic printf

One of the key aspects of interactive C++ is exploratory programming which encourages showing
execution results on screen easily. Typing every time printf or similar is too laborious and too
annoying. Taking inspiration from Cling, we could achieve this effect by an extension that lives purely in
libclanginterpreter. We propose to have a special mode to indicate when we want to do value pretty
printing: A expression in the global scope (without the semicolon). Coincidently Rust takes a similar
approach:

Submit patches to Phabricator

Differential > D148997

+ [clang] Add a new annotation token: annot_repl_input_end

™ Closed @ Public
Differential > D141215

a' Au by junaire on Apr 23 20

[clang-repl] Introduce Value to capture expression results

¥ Closed @ Public

by junaire on Jan

Author Revision
Needs Review junaire D146809 [clang-repl] Implement Value pretty printing
junaire D141215 [clang-repl] Introduce Value to capture expression results

junaire D148997 [clang] Add a new annotation token: annot_repl_input_end

What | learned

21

Crazy long revision history!

Large patches are hard to get it in!

Diff 1

Diff 2

Diff 3

Diff 4

Diff 5

Diff 6

Diff 7

Diff 8

Diff 9

Diff 10

Diff 11

Diff 12

Diff 13

Diff 14

Diff 15

Diff 16

Diff 17

Diff 18

Diff 19

Diff 20

Diff 21

Diff 22

Diff 23

Diff 24

Diff 25

Diff 26

Diff 27

Diff 28

Diff 3

Diff 35

Diff

Diff 37

Dff 40

Diff 41

Diff 42

Diff 43

Diff 44

Diff 45

Diff 46

Diff 47

Diff 48

Diff 49

Diff 50

Diff 51

Diff 52

Diff 53

Diff 54

Diff 55

Dff 56

Diff

Diff 58

Dff 59

Diff 60

Diff 61

Diff

Dff 63

Diff 64

Diff 65

Diff 66

22

Writing portable code is hard!

-0- Commits on May 23, 2023

Reland "Reland [clang-repl] Introduce Value to capture expression res...

& junaire committed 3

-0- Commits on May 19, 2023

Revert "Reland [clang-repl] Introduce Value to capture expression res...

!' junaire committed last week
Reland [clang-repl] Introduce Value to capture expression results
q' junaire committed last week

-0- Commits on May 16, 2023

Revert "[clang-repl] Introduce Value to capture expression results"
,‘ junaire committed last week v/

[clang-repl] Introduce Value to capture expression results

Q' junaire committed last week X

To revert, or not to revert, it's a question...

aosp-0O3-polly-before-
vectorizer-unprofitable

openmp-clang-x86_64-linux-
debian

clang-hexagon-elf
llvm-clang-win-x-armv7I

sanitizer-x86_64-linux-
autoconf

ppc64le-flang-rhel-clang

sanitizer-aarch64-linux-
bootstrap-msan

llvm-clang-win-x-aarcht4

37790

23

Thank you!

Special thanks to:

Aaron Ballman
Axel Naumann
Lang Hames

Richard Smith
Stefan Granitz

24

