
Handle Execution 
results in clang-repl

Jun Zhang
jun@junz.org

Mentors:
Vassil Vassilev & David Lange

1



About me

I’m Jun Zhang, 3rd year undergraduate student 
major in Software Engineering.

Last year Google Summer of Code student, Clang/LLVM contributor. (Land ~70 patches)

Working in the compiler research team since May  2022.
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Project Background
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An introduction to clang-repl

clang-repl is an interactive C++ interpreter that allows for incremental compilation, based on 

Clang and LLVM Orc JIT.

clang-repl> #include <iostream>
clang-repl> std::cout << “Hello, world!\n”;
Hello,world!

4



Project Goals
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Value pretty printing

clang-repl> int x = 42;

clang-repl> x

(int) 42

clang-repl> std::vector<int> v{1,2,3};

clang-repl> v

(std::vector<int> &) { 1, 2, 3 }
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Compiled/Interpreted code interop

int Global = 42;

void setGlobal(int val) { Global = val; }

int getGlobal() { return Global; }

Interp.ParseAndExecute(“void setGlobal(int val);”);

Interp.ParseAndExecute(“int getGlobal();”);

Value V;

Interp.ParseAndExecute(“getGlobal()”, &V);

std::cout << V.getAs<int>() << “\n”; // Prints 42
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The implementation
(Highly inspired by Cling)
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Overview

9



Top level expressions extension

clang-repl> int x = 42;
clang-repl> x // Missing semicolon.
                                   Invalid in standard C++, but fine in the incremental C++.

Omit the semi tells clang-repl we want to capture the value of the DeclRefExpr (x)
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Annotation token: annot_repl_input_end

When parsing an ExprStmt and 
the last semi is missing, we’ll 
pretend that  there’s one and 
set a marker for the late use.
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AST transformation

Sema sets a flag after seeing the special 
token, so we know we should transform the 
AST before the real CodeGen process.
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Code synthesis

clang-repl> x   →  __clang_Interpreter_SetValue(x); // pseduo code.

DeclRefExpr  → CallExpr
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Value runtime

A value is a container that can carry the arbitrary result of an expression in an 
endian-independent way with small buffer optimization.

The value that holds the information of the expression can be passed around after 

construction.
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Pretty print implementation

If the user asks for the Value, we 
pass it as output parameter.

Or we perform pretty printing:
Invoke Value::dump() 
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Implementation of Value::dump

If the type is a builtin type:

  Just print it directly.

Else:

  Synthesize a call to another runtime function: PrintValueRuntime(const T*)

16



std::string PrintValueRuntime(const T*)

All overloads live in a header, which 

are included at runtime.

So print a std::vector is  equivalent to:
PrintValueRuntime(&v);

This means users can write their own overload for their types:

clang-repl> struct S{};
clang-repl> std::string PrintValueRuntime(const S* s) { return “My printer!”; }
clang-repl> S{}
(S) “My Printer!” 17



How we make it
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Submit the RFC

Spend almost one month writing 
the RFC and discussing the 
implementation with the 
community
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Submit patches to Phabricator

Made 2 patches in but still one left!

20



What I learned
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Large patches are hard to get it in!

Crazy long revision history!
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Writing portable code is hard!

To revert, or not to revert, it’s a question…
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Thank you!

Special thanks to:

Aaron Ballman
Axel Naumann
Lang Hames
Richard Smith
Stefan Gränitz
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