
Handle Execution 
results in clang-repl

Jun Zhang
jun@junz.org

Mentors:
Vassil Vassilev & David Lange

1



About me

I’m Jun Zhang, 3rd year undergraduate student 
major in Software Engineering.

Last year Google Summer of Code student, Clang/LLVM contributor. (Land ~70 patches)

Working in the compiler research team since May  2022.

2



Project Background

3



An introduction to clang-repl

clang-repl is an interactive C++ interpreter that allows for incremental compilation, based on 

Clang and LLVM Orc JIT.

clang-repl> #include <iostream>
clang-repl> std::cout << “Hello, world!\n”;
Hello,world!

4



Project Goals

5



Value pretty printing

clang-repl> int x = 42;

clang-repl> x

(int) 42

clang-repl> std::vector<int> v{1,2,3};

clang-repl> v

(std::vector<int> &) { 1, 2, 3 }

6



Compiled/Interpreted code interop

int Global = 42;

void setGlobal(int val) { Global = val; }

int getGlobal() { return Global; }

Interp.ParseAndExecute(“void setGlobal(int val);”);

Interp.ParseAndExecute(“int getGlobal();”);

Value V;

Interp.ParseAndExecute(“getGlobal()”, &V);

std::cout << V.getAs<int>() << “\n”; // Prints 42

7



The implementation
(Highly inspired by Cling)

8



Overview

9



Top level expressions extension

clang-repl> int x = 42;
clang-repl> x // Missing semicolon.
                                   Invalid in standard C++, but fine in the incremental C++.

Omit the semi tells clang-repl we want to capture the value of the DeclRefExpr (x)

10



Annotation token: annot_repl_input_end

When parsing an ExprStmt and 
the last semi is missing, we’ll 
pretend that  there’s one and 
set a marker for the late use.

11



AST transformation

Sema sets a flag after seeing the special 
token, so we know we should transform the 
AST before the real CodeGen process.

12



Code synthesis

clang-repl> x   →  __clang_Interpreter_SetValue(x); // pseduo code.

DeclRefExpr  → CallExpr

13



Value runtime

A value is a container that can carry the arbitrary result of an expression in an 
endian-independent way with small buffer optimization.

The value that holds the information of the expression can be passed around after 

construction.
14



Pretty print implementation

If the user asks for the Value, we 
pass it as output parameter.

Or we perform pretty printing:
Invoke Value::dump() 

15



Implementation of Value::dump

If the type is a builtin type:

  Just print it directly.

Else:

  Synthesize a call to another runtime function: PrintValueRuntime(const T*)

16



std::string PrintValueRuntime(const T*)

All overloads live in a header, which 

are included at runtime.

So print a std::vector is  equivalent to:
PrintValueRuntime(&v);

This means users can write their own overload for their types:

clang-repl> struct S{};
clang-repl> std::string PrintValueRuntime(const S* s) { return “My printer!”; }
clang-repl> S{}
(S) “My Printer!” 17



How we make it

18



Submit the RFC

Spend almost one month writing 
the RFC and discussing the 
implementation with the 
community

19



Submit patches to Phabricator

Made 2 patches in but still one left!

20



What I learned

21



Large patches are hard to get it in!

Crazy long revision history!

22



Writing portable code is hard!

To revert, or not to revert, it’s a question…

23



Thank you!

Special thanks to:

Aaron Ballman
Axel Naumann
Lang Hames
Richard Smith
Stefan Gränitz

24


