Adding support for differentiating
with respect to multi-dimensional

arrays(or pointers) in reverse
mode.

By - Rishabh Bali

Basics of Automatic Differentiation

e Aims to produce a procedure that calculates the derivative of a given mathematical function
w.r.t to one or many input variables

e Itdoesso by breaking down the mathematical function
into a computation graph divided into some primitive

operations.

Eg: Consider the function

Z = xy + sin(x)

The Chain Rule

e Fundamental to Automatic Differentiation is the chain rule which helps us
calculate the derivative of the dependent variable by calculating the partial
derivative of the decomposed functions

Jw ow Ou;
-2 (5 5t

;
Oow Ou; Ow Ous
i e R
Oou, Ot Ouy Ot

Forward Vs Reverse Mode AutoDiff

=
.Q
=]
[
)
@
o
<]
2
a
©
=
[
s
<
[}
5
m

Forward propagation
of derivative values
of derivative values

e Flow of derivatives is in the direction
opposite to the normal flow of
computation.

e Eventhough we can calculate
derivative in one shot we need more
memory to store intermediate
variables

e Flow of derivatives is in the direction
of the computation.

e Need to calculate derivative w.r.t each
independent variable.

What is clad and how does it work ?

e Clad enables automatic differentiation of mathematical functions in C++
It is an open source Clang plugin based on LLVM.

e Clad does this by parsing and transforming the abstract syntax tree
(AST).

e Clad support both forward and reverse mode automatic differentiation
currently along with computation of hessian and jacobian matrices.

N\

Clad’s APl for Reverse Mode AD

A simple example to show differentiation w.r.t all input variables in
reverse mode.

#include <iostream>
#include "clad/Differentiator/Differentiator.h"

double func(double a, double b) {
return axb;

I

int main() {

auto d_fn = clad::gradient(func);

double d_a 0;

-

double d_b 0;

d_fn.execute(3, &d_a, &d_b);
}

Or we can chose the independent variables for differentiation

#include <iostream>
#include "clad/Differentiator/Differentiator.h"

double func(double a, double b) {
return axb;

}

int main() {

auto d_fn = clad::gradient(func, "a");

double d_a = 0;

d_fn.execute(

}

N\

Reverse Mode and differentiating w.r.t
arrays

Differentiating w.r.t single dimensional arrays

#include <iostream>
#include "clad/Differentiator/Differentiator.h"

double fn(double arr[2]) {
return 2* arr[0] * arr[1];

}

int main() {

auto d_fn = clad::gradient(fn);

double arr[2] = {1, 2};

double d_arr[2] = {0};

d_fn.execute(arr, d_arr);

i

N\

Task 1: Enable support for differentiation w.r.t to
multi-dimensional arrays in reverse mode.

Example for differentiation w.r.t multi-dimensional arrays

double fn(double arr[5]1[5]) {
double res = 1 * arr[0][0] + 2 * arr[1][1] + 4 * arr[2][2];
EeEURNREESEATD

i

int main() {
auto d_fn = clad::gradient(fn);

double arr[5][5] = {{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{1617, 1819, 260}:
{21, 22, 23, 24, 25}};

double d_arr[5][5] = {};

d_fn.execute(arr, d arr);

std::cout << "Derivative of d_fn g << d_arr[0][0] << "\n";
std::cout << "Derivative of d_fn H << d_arr[1][1] << "\n";
return 0;

Task 2 : Add support for differentiating w.r.t
pointers in reverse mode

e Reverse Mode in clad doesn’t support differentiation w.r.t pointers.
e Theonly way around this is to convert pointers to references and then differentiate using
clad.

Differentiating w.r.t pointers in reverse mode

#include <iostream>
#include "clad/Differentiator/Differentiator.h"

double fn(double *a, double *b) {

return 2*(*a+*b);

iy

int main() {
auto d_fn = clad::gradient(fn);
i

Alternative Way : Pass variables by Reference

#include <iostream>
#include "clad/Differentiator/Differentiator.h"

double fn(double &a, double &b) {

return 2x(a+b);

}

int main() {
auto d_fn = clad::gradient(fn);
}

Main Goals of this project :

e Add support for differentiating w.r.t to multidimensional arrays in
reverse mode.

e Add support for differentiating w.r.t pointers in reverse mode.

e Support the implementation with tests and documentation.

Thank You

