
PAVLO SVIRIN, 2023-12-06

ROOT: superbuilds

• PhD: National Technical University of Ukraine (2014), Computer
Science

• Academic work experience:

• CERN (2014-2017): project associate at ALICE experiment

• Brookhaven National Laboratory (2017-2019)

• CERN (2019-2021): project associate at ATLAS experiment

• Barcelona Supercomputing Center (2021-2023)

• Speaks Ukrainian, English, Spanish, Chinese, Russian. Some
knowledge about Sanksrit, Middle Egyptian, Crimean Tatar.

Personal information

ROOT

• ROOT is a framework for data processing developed at CERN

• Used in high-energy physics and astrophysics

• Provides lots of features for:

• data processing

• data saving and data access

• publish results

• using interactive sessions using Cling C++ or building customs
applications

• Website: https://root.cern/

• ROOT needs lots of time to compile and user not all of
the modules

• Around 130 internal modules with inter-
dependencies

• Practical use case: instead of downloading more then
1GB of full ROOT sources or pre configured ROOT
binaries, you can decide to start with minimal set ~50
Mb and expand with any customization you want.

ROOT: simplification of compilation

• The idea is to specify which components have to be compiled during
configuration time

• Auto-detection of dependencies among the modules

• done by parsing of CMakeLists files in search of
ROOT_STANDARD_LIBRARY definitions and their dependencies

• Dependency tracking can be implemented using simple graph
database like https://github.com/dpapathanasiou/simple-graph

• Absolutely minimal set of module to be compiled to run ROOT:

• Core, IO, CLING interpreter, MathCore

• other modules compiled if specified

ROOT: simplification of compilation

https://github.com/dpapathanasiou/simple-graph
https://github.com/dpapathanasiou/simple-graph

• Cmake call will look like the following:

cmake ../root-6.28.06/ -Dxrootd=0 -Dssl=0 -Dtmva=0 -Dwebgui=0 -Dxproofd=0 -Dgraf=0 -Dexecutables=1
-Dnet=1 -Ddb=1 -Dmath=1 -Dbindings=1 -Dhtml=0 -Dgui=0 -DCMAKE_INSTALL_PREFIX=/mnt/sdb1/opt/
root-modules -Dxml=0 -Dhttp=0 -Dtree=0 -Dproof=0 -Druntime_cxxmodules=1

ROOT: menu-based compilation

• The idea is to develop a
similar to Linux’s
menuconfig TUI tool
which will automatically
enable necessary
dependencies from
selections

• Modulemap in ROOT is a file which defines available components in the
installation directory, their headers and shared libraries

• Currently include/module.modulemap a file of several hundreds lines

• We managed to split it into multiple files:

• each file defines one component

• main modulemap file just includes all of these files

• Benefits:

• easy to add new components

• easy to identify which components are already installed

Distributed modulemap files

• Goal:

• to allow to skip compilation of the components which are
already built and installed to target directory

• to easily add new components to distributed modulemap
infrastructure

• in case of admin-only rights to write into ROOT’s installation
directory: to install new components together with their
modulemap files to different directory and then on ROOT’s
start combine all of the necessary modulemaps into one

ROOT: partial builds

• “Cannot build ROOT if another ROOT at /usr/local” https://
github.com/root-project/root/issues/7128

• This is relevant for

• sanity: separating the build and its artifacts from other, pre-
existing ROOT artifacts allows us to be certain we build what we
think we build and we test the build and not a combination of the
build and whatever other ROOT there is;

• Target audience: people building ROOT on shared resources for
which they don't have admin powers

• Expected behavior: ROOT builds should be the same whether or
not there are other ROOT installs / binaries no the system

ROOT: problem example

https://github.com/root-project/root/issues/7128
https://github.com/root-project/root/issues/7128
https://github.com/root-project/root/issues/7128
https://github.com/root-project/root/issues/7128

• Completed:

• builds with specified components for basic components

• complex components like ones for plotting require more sophisticated
approach

• build with minimal number of components was created and successfully
tested

• a tool which scans ROOT libraries for dependencies was implemented and
tested

• In progress:

• incremental builds, which allow to skip already installed components

• tracking dependencies among complex components

Conclusions and future work

