
TBR (To-Be-Recorded) Analysis
Implementation Strategy for Clad

Petro Zarytskyi
Mentors: Vassil Vassilev, David Lange

General TBR Analysis Strategy

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable y

General TBR Analysis Strategy

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable y

General TBR Analysis Strategy

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable y

General TBR Analysis Strategy

DECLARED CHANGED CHANGED USED USED CHANGED

History of usage of a variable x

USED

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable y

false false falsetrue true true

false false false falsetrue true

But what do we mean by used?

y = x * x;

y = 2 * x + 3 * z;

_d_x += _d_y * x + x * _d_y;
_d_y = 0;

_d_x += 2 * _d_y;
_d_z += 3 * _d_y;
_d_y = 0;

But what do we mean by used?

The same logic applies to += and -=

y += x; y = y + x;⇔

y -= x*x; y = y - x * x;⇔

But what do we mean by used?

This only applies to *= and /= if the RHS is const

y *= 3; y = y * 3;⇔

y /= x; y = y / x;⇔

So how do we keep track of variables’ usage?

Let’s introduce
std::map<const clang::VarDecl*, bool> Req;

Safe choices

● When we don’t know for sure if a variable
was used we should assume it was.

● Similarly, if our model doesn’t give enough
information if we should store a variable we
store it just in case.

What do we do with conditional statements?

if (cond)
 A;

Req0 = Req;
Visit A;
Req = Req || Req0;

if (cond)
 A;
else
 B;

Req0 = Req;
Visit A;
Req1 = Req;
Req = Req0;
Visit B;
Req = Req || Req1;

What about loops?

while (cond)
 B;

Req0 = Req;
Visit B for TRB analysis only;
Req = Req || Req0;
Visit B;
Req = Req || Req0;

A;
while (cond)
 B;
C; A; C;

A; B; B; B; C;

What about loops?

do (cond){
 B;
} while (cond);

Req0 = Req;
Visit B for TRB analysis only;
Req = Req || Req0;
Visit B;

break/continue statements

while (cond){
…
break; //could be the end of the loop
…
continue; //could be either the end or in the middle
}

So we have to consider:

● continue statements in the first pass
● both break and continue statements in the second pass

What about function calls?

f(x); Req[x] = true;

double f (double x) {...}

double g (double &x) {...}

g(x);
Store x;
Req[x] = false;

Proposed Implementation Sequence

● Create a simple structure in ReverseModeVisitor to track TBR analysis
● Implement TBR analysis for non-array (non-pointer) type variables without control-flow and

function calls
● Start tracking linear expressions
● Add support for conditional statements
● Add “TBR only” visiting mode in ReverseModeVisitor and add support for loops without

break/continue statements
Add support for break/continue statements

● Add support for function calls
● Add support for array (pointer) type variables with constant indices
● Add support for objects and member functions
● Add support for functors and lambda functions
● Possibly: Add support for expressions with non-constant indices

What I didn’t mention

● How declarations will be handled
● Storing in multiplication/division for efficiency reasons
● How exactly we will track linear expressions
● How we will analyze conditions
● The way TBR analyzer will be organized
● Member functions, functors, lambdas

