TBR (To-Be-Recorded) Analysis
Implementation Strategy for Clad

Petro Zarytskyi

Mentors: Vassil Vassilev, David Lange

General TBR Analysis Strategy

History of usage of a variable x

DECLARED—— CHANGED — USED —— CHANGED—— USED —— USED —— CHANGED

History of usage of a variable y

DECLARED —— USED — USED — CHANGED — CHANGED — CHANGED — USED

General TBR Analysis Strategy

History of usage of a variable x

4 4 4

DECLARED—— CHANGED — USED —— CHANGED—— USED —— USED —— CHANGED

History of usage of a variable y

\/ N4 \/

DECLARED —— USED — USED — CHANGED — CHANGED — CHANGED — USED

General TBR Analysis Strategy

History of usage of a variable x

X

V/

DECLARED—— |CHANGED —— |USED —— CHANGED

—— USED —

DECLARED —— USED —

History of usage of a variable y

V/

USED —— CHANGED

4

X X

USED — CHANGED |—|CHANGED | — |CHANGED |— USED

General TBR Analysis Strategy

History of usage of a variable x

false >< false true V false true true V

DECLARED—— CHANGED — USED —— CHANGED—— USED —— USED —— CHANGED

History of usage of a variable y

false true true M false >< false >< false
DECLARED —— USED — USED — CHANGED — CHANGED — CHANGED — USED

But what do we mean by used?

dx+= dy*x+x*_d.y;

y =X*X; “dy=0:
dx+=2* d.y;
y=2*x+3*z _dz+=3* d.y;

d y=0;

But what do we mean by used?

The same logic applies to += and -=

y+rsx; & YyIYy+X

y-==X*X; © y=y-X*X;

But what do we mean by used?

This only applies to *= and /= if the RHS is const

So how do we keep track of variables’ usage?

Let’s introduce
std::map<const clang::VarDecl*, bool> Req;

Safe choices

e When we don’t khow for sure if a variable
was used we should assume it was.

e Similarly, if our model doesn’t give enough
information if we should store a variable we
store it just in case.

What do we do with conditional statements?

if (cond) Req0 = Req;
A; Visit A;
Req = Req || Req0;

Req0 = Req;
if (cond) Visit A;
A; Req1 = Req;
else Req = Req0;
B; Visit B;

Req = Req || Req1;

What about loops?

A; A; B; B; B; C;
while (cond)
B;
C: A; C;
Reqg0 = Req;
while (cond) Visit B for TRB analysis only;
B; Req = Req || Req0;
Visit B;

Req = Req || Req0;

What about loops?

Req0 = Req;

Visit B for TRB analysis only;
Req = Req || Req0;

Visit B;

do (cond){
B;
} while (cond);

break/continue statements

while (cond){
break; //could be the end of the loop

continue; //could be either the end or in the middle

}

So we have to consider:

e continue statements in the first pass
e both break and continue statements in the second pass

What about function calls?

double f (double x) {...}

double g (double &x) {...}

f(x); Req[x] = true;

- Store Xx;
Req[x] = false;

g(x);

Proposed Implementation Sequence

Create a simple structure in ReverseModeVisitor to track TBR analysis

Implement TBR analysis for non-array (non-pointer) type variables without control-flow and
function calls

Start tracking linear expressions

Add support for conditional statements

Add “TBR only” visiting mode in ReverseModeVisitor and add support for loops without
break/continue statements

Add support for break/continue statements

Add support for function calls

Add support for array (pointer) type variables with constant indices

Add support for objects and member functions

Add support for functors and lambda functions

Possibly: Add support for expressions with non-constant indices

What | didn’t mention

How declarations will be handled

Storing in multiplication/division for efficiency reasons
How exactly we will track linear expressions

How we will analyze conditions

The way TBR analyzer will be organized

Member functions, functors, lambdas

