To-Be-Recorded Analysis
In Clad. Summary

Petro Zarytskyi

Mentors: Vassil Vassilev, David Lange



RESEARCH

A quick reminder of how TBR analysis works

History of usage of a variable x

DECLARED —— USED — USED — CHANGED — CHANGED — CHANGED — USED

o (@ .



COMPILER

C|R

RESEARCH

A quick reminder of how TBR analysis works

DECLARED —— USED —

History of usage of a variable x

V/

USED — CHANGED

X

CHANGED

X

CHANGED

— USED



RESEARCH

A quick reminder of how TBR analysis works

History of usage of a variable x

false true true /  false >< false >< false
DECLARED —— USED — USED — CHANGED — CHANGED — CHANGED — USED

o (@ .



COMPILER

C|R

RESEARCH

Modes

VarData

VarDatas graph

Overview

used for analysing
expressions and finding
used variables (data-flow)

stores the information
about one variable

used to handle control-flow

WIE



COMPILER

C|R

RESEARCH

WIE

Modes

marking mode

y; y=XTX
no variables are changed, because of assignment, the
therefore, the marking marking mode is turned on

mode is off for RHS



Ir1S
Ihep

Linear analysis

dx+= dy*x+x* _d.y;

y =X*X; “dy=0:
_d x+=2*_d_y;
y=2*x+3%z _d_z+=3"*_d_y;

_d_y=0;



COMPILER

C|R

RESEARCH

y=X*Xx+2z;

Modes

non-linear mode

/\
v/\v

W) |r|s

by default, the RHS of the
assignment operator is in
linear mode

addition is not able to
affect linearity itself

a product becomes
non-linear when both
terms are no constant



COMPILER

C|R

RESEARCH

VarData

VarsData

(@ IS
Data types hep

stores all the necessary
information about one
variable (in trivial cases, it
is represented with bool)

stores information about all
the variables (this is a map
from VarDecl* to VarData)



FundType VarData

double x; — bool




struct myStruct {
type1 a;
type2 b;
|5

ObjType VarData

myStruct x;

X.a

x.b

VarData

VarData



RefType VarData

double& x=y; — . VarData
(corresponds to y)



RefType VarData

double& x =y; VarData
(corresponds to y)

©

Ir1S
ep



type x[n];

ArrType VarData

x[0]

/ x[7]
\

x[i]

VarData

VarData
VarData



COMPILER

C|R
Non-constant indices

x =y * x[k];

X[(Q \ this could be any element of x

here, we have to be conservative and save x[0]



w) /1S
reqStack (® hep

std::vector<std::vector<VarsData>>



W) /1S
reqStack (® hep

std::vector<std::vector<VarsData>>

if (cond1) {
lllpart 1
} else {

_ branch ///part 1
if (cond2) { o
lllpart 2 initial branch branch ///part 2
branch <

} else {
lllpart 3 branch //Ipart 3

}
}



© e

How are branches merged?

std::vector<std::vector<VarsData>>

if (cond1) {
lllpart 1

} else { branch1 ///part 1
lllpart 2 initial branch <

} branch2 ///part 2

mergedBranch[VD] = branch1[VD] || branch2[VD]



What about loops?

while (cond)
I11A

initial branch <

/l/for break and
branch ///continue statements

[l/for continue
branch "
branch < statements

branch /llpass A



What about loops?

while (cond)
A

/l/for break and

branch

[l/for continue

branch ///continue statements
initial branch <

branch

=

branch ///[pass A

[l/statements




What about loops?

while (cond)
A

/l/for break and

branch ///continue statements
initial branch <

branch //Ipass A once again



COMPILER

C|R

RESEARCH

What should be implemented in future ‘

e Calling functions should make the analysis proceed to analysing the function
e Add reliable support for references
e Add support for pointers



