
To-Be-Recorded Analysis
In Clad. Summary

Petro Zarytskyi
Mentors: Vassil Vassilev, David Lange

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

A quick reminder of how TBR analysis works

DECLARED USED CHANGEDUSED CHANGED CHANGED USED

History of usage of a variable x

false false false falsetrue true

Overview

Modes
used for analysing
expressions and finding
used variables (data-flow)

VarData stores the information
about one variable

VarDatas graph used to handle control-flow

Modes

y = x * x;

marking mode

y;

no variables are changed,
therefore, the marking
mode is off

because of assignment, the
marking mode is turned on
for RHS

Linear analysis

y = x * x;

y = 2 * x + 3 * z;

_d_x += _d_y * x + x * _d_y;
_d_y = 0;

_d_x += 2 * _d_y;
_d_z += 3 * _d_y;
_d_y = 0;

Modes

y = x * x + z;

non-linear mode by default, the RHS of the
assignment operator is in
linear mode+

* z

x xx

addition is not able to
affect linearity itself

a product becomes
non-linear when both
terms are no constant

Data types

VarData
stores all the necessary
information about one
variable (in trivial cases, it
is represented with bool)

VarsData
stores information about all
the variables (this is a map
from VarDecl* to VarData)

FundType VarData

double x; bool

ObjType VarData

struct myStruct {
 type1 a;
 type2 b;
};

x.a

myStruct x;

x.b

VarData

VarData

RefType VarData

double& x = y; VarData
(corresponds to y)

RefType VarData

double& x = y; VarData
(corresponds to y)

double& x = (cond ? y : z);

double& t = arr[k];

ArrType VarData

x[0]

type x[n];

x[i]

VarData

VarData

x[7] VarData

Non-constant indices

x = y * x[k];
x[0] = 1; this could be any element of x

here, we have to be conservative and save x[0]

reqStack

std::vector<std::vector<VarsData>>

reqStack

std::vector<std::vector<VarsData>>
if (cond1) {
 ///part 1
} else {
 if (cond2) {
 ///part 2
 } else {
 ///part 3
 }
}

initial branch

branch

branch
branch

branch

///part 1

///part 2

///part 3

How are branches merged?

std::vector<std::vector<VarsData>>
if (cond1) {
 ///part 1
} else {
 ///part 2
}

initial branch

branch1

branch2

///part 1

///part 2

mergedBranch[VD] = branch1[VD] || branch2[VD]

What about loops?

while (cond)
 ///A

initial branch

branch

branch
branch

branch

///for break and
///continue statements

///for continue
///statements

///pass A

What about loops?

initial branch

branch

branch
branch

branch

///for break and
///continue statements

///for continue
///statements

///pass A

while (cond)
 ///A

What about loops?

initial branch

branch

branch

///for break and
///continue statements

///pass A once again

while (cond)
 ///A

What should be implemented in future

● Calling functions should make the analysis proceed to analysing the function
● Add reliable support for references
● Add support for pointers

