
Re-optimization using JITLink
Mentors: Vassil Vassilev, Lang Hames

Student: Sunho Kim

July 26th 2023

1



Reoptimization

● Choose low optimization level to minimize compile time, identify few “hot” 
functions, then recompile it with higher optimization level.

● One of most exciting feature of JIT compilers since it offers trade-off between 
flexibility and performance.

● My project is to extend LLVM’s ORC API to support flexible reoptimization that 
fulfills needs of various projects

2



Motivation for reoptimization

● CERN folks wants to do real time “double to float” optimizations to balance 
the power consumption and numerical stability.

● Long-term profile guided optimization for clang-repl or cling.
● Opens door for many runtime optimizations for LLVM based languages.

3



JITLink

● Do the same job of LLD but just in time
○ Receives object file (“.o file”) and link in memory to an executable form

● Benefit of using object file format
○ Can use the same compilation pipeline with AOT llvm world
○ Not a lot of overhead; no need to store to file system

● Designed to support full features of AOT compiled object files
● Have linker object abstraction called LinkGraph and plugin system that 

supports adding “LinkGraph transform” passes.
● In general, more stable and robust than previous JIT linker RuntimeDyld.

4



Requirements

● When to run optimization or optimization itself must be user-defined.
○ Many different use cases exist and they are all some sort of engineering problems that need 

their own approaches.
○ Make sure that API is easy to use so that it causes minimal hassle.

● Multi-threading, remote executor process, and laziness support.
○ These are the selling points of ORC API; we don’t want to lose them because of 

reoptimization.
● Must be compatible with the latest JIT infrastructure.

○ A lot of progress happening around new JITLink infrastructure; the future is there.

5



Roadmap

● Part 1: Refactor the JIT infrastructure to better support “redefinition” of 
symbols using JITLink.

● Part 2: Implement reoptimization infrastructure that processes reoptimization 
requests.

● Part 3: Create a cool clang-repl demo that showcases the reoptimization 
capability.

6



Part 1: Refactor the JIT infrastructure

● Many JIT features including reoptimization rely on the “symbol redefinition” 
problem.

○ Lazy JIT is essentially redefining symbol with the actual definition of function when the lazy 
compilation was triggered.

○ Speculative compilation is redefining symbol eagerly.
○ Reoptimization is redefining the symbol with the “reoptimized” definition.

● Right now multiple internal implementations exist to solve the same issue.
● The most established method live in IndirectionUtils.h

○ Pretty capable but it doesn’t utilize new JIT infrastructure and tricky to use it for reoptimization.
○ Only supports the stubs approach where it create a “stub” symbol with the actual symbol name 

that jumps using function pointer that can be atomically rewritten.

7



Part 1: Refactor the JIT infrastructure

● Proposal: Create RedirectionManager abstraction.
● It has two methods: createRedirectableSymbol and redirect.
● createRedirectableSymbol will define the symbol that can be redirected and 

redirect will change the “dummy” symbol to direct the new “impl” symbol.
● Support both JITLink and RuntimeDyLD.

8



Part 2: Implement reoptimization

● Proposal: Create ReoptLayer that processes the reoptimization request.
● ReoptLayer can be used to add reoptimizable materialization unit which will 

create redirectable symbol.
● When user wants to trigger reoptimization, call reoptimize function to request 

reoptimization.
● Possibly, support a handy way to keep track of common profiles such as how 

many times the function has been ran.
● Many design decisions to make: How to make it thread-safe? Can we batch 

the reoptimization request? Should we just receive the defined symbol or IR 
module? How do we clean up the “old” impl symbols?

9



Part 3: Create a cool clang-repl demo

● Brainstorming right now. Currently have two ideas:

1. Standard reoptimization demo that optimizes function from -O0 to -O3 when the 
function gets ran a lot.

2. Advanced profile guided optimization demo that does PGO real time while trying 
to suppress the profiling overhead by turning off profiling at certain interval.

10



Roadmap

● Part 1: Refactor the JIT infrastructure to better support “redefinition” of 
symbols using JITLink. (submitted patches)

● Part 2: Implement reoptimization infrastructure that processes reoptimization 
requests. (~mid-August)

● Part 3: Create a cool clang-repl demo that showcases the reoptimization 
capability. (~early-September)

11


