July 26th 2023

Re-optimization using JITLink

Mentors: Vassil Vassilev, Lang Hames
Student: Sunho Kim

Google
Summer of Code

Reoptimization

e Choose low optimization level to minimize compile time, identify few “hot”
functions, then recompile it with higher optimization level.
e One of most exciting feature of JIT compilers since it offers trade-off between

flexibility and performance.
e My projectis to extend LLVM’s ORC API to support flexible reoptimization that

fulfills needs of various projects

Motivation for reoptimization

e CERN folks wants to do real time “double to float” optimizations to balance
the power consumption and numerical stability.

e Long-term profile guided optimization for clang-repl or cling.

e Opens door for many runtime optimizations for LLVM based languages.

JITLink

Do the same job of LLD but just in time
o Receives object file (“.o0 file”) and link in memory to an executable form

Benefit of using object file format

o Can use the same compilation pipeline with AOT llvm world
o Not a lot of overhead; no need to store to file system

Designed to support full features of AOT compiled object files

Have linker object abstraction called LinkGraph and plugin system that
supports adding “LinkGraph transform” passes.

In general, more stable and robust than previous JIT linker RuntimeDyld.

Requirements

e \When to run optimization or optimization itself must be user-defined.
o Many different use cases exist and they are all some sort of engineering problems that need
their own approaches.
o Make sure that APl is easy to use so that it causes minimal hassle.
e Multi-threading, remote executor process, and laziness support.
o These are the selling points of ORC API; we don’t want to lose them because of
reoptimization.
e Must be compatible with the latest JIT infrastructure.
o Alot of progress happening around new JITLink infrastructure; the future is there.

Roadmap

e Part 1: Refactor the JIT infrastructure to better support “redefinition” of
symbols using JITLink.
e Part 2: Implement reoptimization infrastructure that processes reoptimization

requests.
e Part 3: Create a cool clang-repl demo that showcases the reoptimization

capability.

Part 1: Refactor the JIT infrastructure

e Many JIT features including reoptimization rely on the “symbol redefinition”

problem.
o Lazy JIT is essentially redefining symbol with the actual definition of function when the lazy
compilation was triggered.
o Speculative compilation is redefining symbol eagerly.
o Reoptimization is redefining the symbol with the “reoptimized” definition.

e Right now multiple internal implementations exist to solve the same issue.

e The most established method live in IndirectionUtils.h
o Pretty capable but it doesn’t utilize new JIT infrastructure and tricky to use it for reoptimization.
o Only supports the stubs approach where it create a “stub” symbol with the actual symbol name
that jumps using function pointer that can be atomically rewritten.

Part 1: Refactor the JIT infrastructure

e Proposal: Create RedirectionManager abstraction.

e It has two methods: createRedirectableSymbol and redirect.

e createRedirectableSymbol will define the symbol that can be redirected and
redirect will change the “dummy” symbol to direct the new “impl” symbol.

e Support both JITLink and RuntimeDyLD.

Part 2: Implement reoptimization

e Proposal: Create ReoptLayer that processes the reoptimization request.

e ReoptLayer can be used to add reoptimizable materialization unit which will
create redirectable symbol.

e \When user wants to trigger reoptimization, call reoptimize function to request
reoptimization.

e Possibly, support a handy way to keep track of common profiles such as how
many times the function has been ran.

e Many design decisions to make: How to make it thread-safe? Can we batch
the reoptimization request? Should we just receive the defined symbol or IR
module? How do we clean up the “old” impl symbols?

Part 3: Create a cool clang-repl demo

e Brainstorming right now. Currently have two ideas:

1. Standard reoptimization demo that optimizes function from -O0 to -O3 when the
function gets ran a lot.

2. Advanced profile guided optimization demo that does PGO real time while trying
to suppress the profiling overhead by turning off profiling at certain interval.

10

Roadmap

e Part 1: Refactor the JIT infrastructure to better support “redefinition” of
symbols using JITLink. (submitted patches)

e Part 2: Implement reoptimization infrastructure that processes reoptimization
requests. (~mid-August)

e Part 3: Create a cool clang-repl demo that showcases the reoptimization
capability. (~early-September)

1

